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ABSTRACT 

The SABR stochastic volatility model is a widely used option pricing tool in the financial world. It was the 

first that could successfully capture the static pattern of the volatility smile while predicting its dynamics 

much better than previously used local volatility models. This model is often used for hedging where the 

portfolio is usually hedged to the delta and vega risks representing the uncertainty in the underlying asset 

price and its volatility. The model assumes that the two non-stochastic parameters - ρ and υ - are stable 

over time. However, traders regularly recalibrate these model parameters to fit the market, making them 

stochastic as well and introducing additional parameter risks. Then the question arises whether this 

behaviour is due to the larger complexity of the market or due to the incorrect model choice? In our study 

we analyzed the dynamics of the volatility smiles of the GBP swaption market using an autoencoder-like 

neural network, and created an alternative model, a deformation of SABR, in which we can describe the 

smiles with two stochastic parameters only as it would be required from a real two factor model. This new 

model can reproduce well the volatility smiles for several months until it reaches a critical point- the onset 

of the COVID crisis - where the reproduction error increases suddenly. We found that the sharp discrepancy 

is caused by a sudden change in the representative low dimensional market manifold, and our model is 

highly sensitive to pick up this change, making it especially useful for regime change detection. 
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1. Introduction 

In the early ‘70s, the Black-Scholes model (Black & Scholes, 1973) put the pricing of options 

on a rigorous conceptual and mathematical basis. Assuming that the underlying asset volatility 

is constant was a reasonable simplification to make, and indeed, it was a good approximation 

for equity markets before the 1987 Black Monday crash. Since then the empirical reality is that 

options at different strike prices (K) imply different volatilities to match their market prices. 

This behaviour of the market is called the volatility skew or volatility smile. During the ‘90s 

several local volatility models appeared which were the generalisation of Black-Scholes and 

tried to capture the observed volatility smile. While these models could well reproduce the 

static pattern of the smiles they were unable to predict their dynamics. This problem was 

resolved later by stochastic volatility models.  One approach was proposed by  Hagan and his 

colleagues who introduced the so-called SABR stochastic volatility model (Hagan et al., 2002). 

This model uses two coupled stochastic differential equations for describing the movement of 

the underlying asset price and its volatility (see Eq. 1). 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.33422/eje.v1i2.141
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𝑑𝐹𝑡 = 𝜎𝑡(𝐹𝑡)𝛽𝑑𝑊𝑡
1

𝑑𝜎𝑡 = 𝜐𝜎𝑡𝑑𝑊𝑡
2 (1)

𝑑𝑊𝑡
1𝑑𝑊𝑡

2 = 𝜌𝑑𝑡
𝛼 =  𝜎𝑡=0

 

where Ft, σt are the forward price and its volatility, υ is the volatility of volatility, dW1
t and dW2

t 

are two Brownian processes that are correlated through the correlation parameter ρ and 𝛽 is the 

parameter which describes the so called backbone of the volatility smiles. There exists a 

perturbative result (see Eq. 2.) for the normal volatility implied by the option price which we 

will use later in our analysis. This approximation holds for relatively small α and υ which were 

in our case α ~ 0.005 and υ ~ 0.5. 

𝜎𝑁(𝛼, 𝛽, 𝜌, 𝜈, 𝐹, 𝐾, 𝑇) = 𝜐
(𝐹 − 𝐾)

𝑥(𝑧)
{1 + [

𝛽(𝛽 − 2)𝛼2

24𝐹𝑚𝑖𝑑
2−2𝛽

+
𝜌𝛽𝜐𝛼
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+
2 − 3𝜌2

24
𝜐2] 𝑇}   (2)
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𝜐

𝛼
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𝜎𝑁,𝐴𝑇𝑀(𝛼, 𝛽, 𝜌, 𝜈, 𝐹, 𝑇) = 𝛼𝐹𝛽 {1 + [
𝛽(𝛽 − 2)𝛼2

24𝐹𝑚𝑖𝑑
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+
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4𝐹𝑚𝑖𝑑
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+
2 − 3𝜌2

24
𝜐2] 𝑇}

 

It turns out however that the dynamics of the volatility smile is still not properly described by 

the SABR model either. Traders have to recalibrate relatively often the ρ and υ parameters to 

fit the model to the observed data. 

As in the case of many fields of science, models in the financial area always get more and more 

complicated having larger and larger degrees of freedom to better describe a specific problem. 

The usual model development process consists of two main steps: 1) Find the most relevant 

parameters of the problem and create a mathematical model that describes the relation between 

them; 2) Compare the model behaviour with the observations, and go back to step 1, if there is 

a big discrepancy. This clearly shows that during this iterative process it is really hard to find 

the number of minimally required parameters and the correct relations among them. 

In recent years neural networks made a big impact on several areas of sciences and everyday 

life, and brought a completely different method in solving problems compared to our 

previously used deterministic approach. Deep Learning provides a data-driven approach where 

the model is adapted directly to the observed data. We do not have to care about all possible 

events anymore because the neural network can itself learn the complex relation between the 

real parameters, hence providing a better representation of the problem. In our work we used 

neural networks to find an alternative option pricing model which can well describe the smiles 

and their dynamics with strictly two stochastic parameters. 

1.1. Related work 

The stability of model parameters is still an actively studied area in finance, since many 

practical applications, e.g. hedging and option pricing rely on the estimated long-term 

dynamics of the underlying asset. Extensive research has been prepared by (Webber & Becker, 

2014) where the authors investigated the effect of fixing some of the model parameters when 

calibrating the SABR and Heston models on the observed data. They analyzed the South 
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Africen market related to options on futures. They found that the parameter fixing reduces the 

variance of the remaining parameters, however the calibration accuracy gets worse. 

Furthermore they found that some parameters (ρ and ν of SABR) are correlated in time. 

Another redundancy was found earlier by (Hagan et al., 2002 and West, G, 2005), who 

demonstrated that the 𝛽 and ρ parameters has similar effect on the volatility skew. In both 

works the solution was to empirically detect these redundant parameters and fix one of them 

during the calibration procedure. These findings clearly show that the SABR model is unable 

to fit real data when we restrict stable and uncorrelated parameters. This indicates that the 

model itself should be modified in a way that it has less degrees of freedom which is possible 

due to the observed correlations. In our study we use neural networks to find this modified 

model where we can force the relevant parameters to be as stable as possible while trying to 

keep low the calibration loss as well. Until now, the main applications of neural networks in 

finance were to replicate the already existing pricing models (Liu et al., 2019; Pagnotti et al., 

2019; Gaspar et al., 2020). By doing so we are able to build a closed formula that directly maps 

the model parameters into option prices. Hence, we do not need to run the time-consuming 

Monte Carlo simulations using the analytical differential equations and the pricing process will 

be several orders of magnitudes faster than before. This has a major advantage in the model 

calibration on the observed market data as well (Horvath et al., 2019; Bayer et al., 2019). 

This paper is organised as follows: In Section 2 we describe the main details of the data as well 

as the results of the classical SABR model fit. In Section 3 we explain our methodology and 

the implemented network architecture. In Section 4 we show our results derived on the training 

and test sets. In Sections 5 we discuss the key takehome messages of our study and finally in 

Section 6 we summarize our work. 

2. Materials and Methods 

A swaption (also known as a swap option) is an option to enter into an interest rate swap. A 

swaption has two key properties: the expiry and the tenor. Expiry defines the time interval in 

which one can enter into a swap, and tenor is the duration of the swap. Expiries can range from 

a few months to even 30 years while tenors are in the range of 1-30 years. This shows that there 

is a large variety of swaptions. To keep our analysis easy to interpret we chose a specific 

swaption with 1 year expiry and 1 year tenor. We used historical data for GBP 1y-1y swaptions 

from ICAP (www.icap.com) with implied normal volatility values at 8 strike points: ATM (at-

the-money strike) + [-50, -25, -12.5, 0.0, 12.5, 25, 50, 100] bps (basis points) shifts. The 

observed time interval is between 2016 February 15 and 2020 October 21, hence we have skew 

data from 1221 business days. We fitted the asymptotic SABR formula for normal implied 

volatility on the data using the Levenberg-Marquardt optimization algorithm, where we fixed 

the 𝛽 parameter at zero, and searched for the best values of  α, ρ and ν parameters. The results 

can be seen in Figure 1. 
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Figure 1: Time evolution of the observable ATM volatility and forward rate as well as the fitted SABR 

model parameters: α, ρ and ν. For illustration purposes ρ and ν are downscaled by a factor of 100 

If the SABR formula would perfectly describe the dynamics of the skews of this specific 

swaption, we should see that the ρ and ν parameters are almost constant for a long time and 

only the two stochastic variables - the forward rate and the instantaneous volatility (α) - move 

over time. However, in reality there are quite a lot of sharp changes in the time evolution of 

these parameters (as found in (Zhang & Fabozzi, 2016) and (Webber & Becker, 2014)), as seen 

in Figure 1 (green and blue lines).  

This instability of these two parameters are critical in hedging applications, where we account 

for only the movement of the forward rate and its volatility and suppose that ρ and ν are constant 

over a long time. In our analysis we tried to find a modified SABR model in which the actual 

forward rate and the unobservable volatility can describe all of the skews with a given ρ and ν. 

In this way we would find the "correct" SABR model, where there are strictly two stochastic 

variables only (the observable forward rate and the unobservable α’) and two constant 

parameters (ρ' and ν').  

Neural networks, especially autoencoders, are great tools for such nonlinear dimension 

reduction problems. However, we do not have enough training data to teach the full dynamics 

of swaption skews/smiles to a network from scratch and the resulting model is often difficult 

to interpret, an important requirement in the financial world. To reduce these problems we 

started from two neural networks - the encoder and decoder part of an autoencoder - which 

were trained on 1 million synthetic volatility smiles generated by the SABR dynamics. The 

encoder maps the observed volatility smiles to the model parameters, and the decoder part 

reproduces the original volatility smile from the model and the observable parameters. 

2.1. Generating synthetic data 

First we determined the range (r(...)) of the observed forward price (F) and the fitted model 

parameters ({θi,real}) of the analysed swaption time series and defined the range of the synthetic 

data ({θi,syn }) as follows:  

𝑟(𝜃𝑖,𝑠𝑦𝑛) = [𝑚𝑖𝑛(𝜃𝑖,𝑟𝑒𝑎𝑙) − 0.05 𝑟(𝜃𝑖,𝑟𝑒𝑎𝑙), 𝑚𝑎𝑥(𝜃𝑖,𝑟𝑒𝑎𝑙) + 0.05 𝑟(𝜃𝑖,𝑟𝑒𝑎𝑙) ]

𝑟(𝐹𝑠𝑦𝑛) = [𝑚𝑖𝑛(𝐹𝑟𝑒𝑎𝑙) − 0.05 𝑟(𝐹𝑟𝑒𝑎𝑙), 𝑚𝑎𝑥(𝐹𝑟𝑒𝑎𝑙) + 0.05 𝑟(𝐹𝑟𝑒𝑎𝑙) ]
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In this way we slightly extended the range of synthetic parameters relative to the real SABR 

parameters. This extension is crucial since the interpolation feature of a neural network is 

typically worse at the edges of the corresponding domain. In Tab. 1. we summarized the ranges 

of the forward and the model parameters which were used for synthetic data generation. 

Table 1. 

Ranges of  the forward and the model parameters used for synthetic data generation 

Β 0.0 

F [-0.0015, 0.0142] 

Α [0.0021, 0.0071] 

Ρ [-0.2166, 1.0] 

Υ [0.1424, 1.0020] 

The parameters used were uniformly distributed inside the defined domain, and we generated 

altogether 1 million volatility skews each containing 8 volatilities at the same 8 strikes as in 

the real dataset. These 8 volatilites  and the forward value were given to the input layer of the 

encoder network which predicted the α, ρ, υ model parameters. The decoder network was 

designed as the replication of the SABR model, which means that it predicts a volatility value 

at a single strike using the three model parameters and the forward value. As a consequence 

the decoder has been trained on the individual points of the synthetic skews. The data set was 

split into a training and test set using a ratio of 7:3, respectively. We used the real dataset as 

the validation set. In Figure 2. we have illustrated the distribution of the real and synthetic 

parameters. 

 
Figure 2: Distribution of the forward rate as a function of the synthetic (blue dots) and real (orange 

dots) model parameters 

2.2. Training the encoder 

We used three fully connected hidden layers with 32 units with elu activation function and one 

readout layer. The batch size was set to 2000 and the model was trained with ADAM optimizer 

for a few hours. We used the normalized root mean squared error (NRMSE) for the measure 

of accuracy, where the RMSE was normalized by the size of the domain of the ground truth 

values. The model was evaluated on the test set which can be seen in Figure 3. 
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Figure 3: Prediction efficiency of the encoder network regarding to the α, ρ, υ model parameters 

The model produced a high prediction efficiency: in all parameters the NRMSE value is below 

or equal to 0.61 %. 

2.3. Training the decoder 

The decoder contains four fully connected layers with elu activation function and one readout 

layer. The network predicts a single volatility value given the relative strike (ΔK), the forward 

value and the three SABR model parameters. The batch size was set to 2000 and we used again 

the ADAM optimizer. After a few hours of training, we got an accuracy of NRMSE=0.19% 

(see Figure 4.). 

 
Figure 4: Implied normal volatility prediction efficiency of the decoder network 

2.4. Combining the encoder and decoder networks 

After we trained the encoder and decoder parts individually, we linked the two parts together 

into an autoencoder-like structure (see Figure 5.). We use this term for this model since unlike 

in the case of the classical autoencoders, here the decoder part not only takes the latent 

parameters as input but also the observable forward rate and ΔK. 
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Figure 5: Architecture of the combined model. Left: encoder network; right: decoder network. The 

input and output parameters are highlighted with red brackets 

We defined the evaluation of this model as follows: 1) The encoder part first maps the 8 

volatility values and the forward rate into the 3 dimensional latent space spanned by the α, ρ, υ 

model parameters; 2) The decoder part takes these latent variables and the forward rate and 

predicts the volatility values at the 8 strikes, hence reproducing the original volatility skew. 

This model was further trained on the real data set where we required the network to reproduce 

well the input volatility smiles while keeping the ρ' and υ' parameters as constant as possible, 

see the loss function in Eq. 3. The ρ0 and υ0 constant parameters were chosen as the mean value 

of the real ρ and υ parameters regarding to the train set. 

𝐿 = ∑(𝑉𝑔𝑡,𝑖 − 𝑉𝑝𝑟𝑒𝑑,𝑖)
2

𝑛

𝑖=0

+ (𝜌0 − 𝜌′)2 + (𝜐0 − 𝜐′)2 (3) 

The training set was split chronologically at 2019 September 1 to a training and test set to avoid 

leakage of future information. We also randomly selected the 20% of the train set for the 

validation set. Hence, the train, validation and test set contained data of 738, 187 and 297 

business days, respectively. 

3. Results 

3.1. Evaluation on the training set 

The combined model was again trained for approx. 3 hours using a batch size of 32. In the 

following we will refer to the trained model as the „deformation of SABR“ or „deformed 

SABR“ and the original model with no further training on real data will be called as the „SABR 

replication“. We can see the evaluation results of the model on the training set in Figure 6. 
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Figure 6: Time evolution of the observable forward rate and ATM volatility as well as the reproduced 

ATM volatility and the new α', ρ', υ' latent variables regarding to the training set. For illustration 

purposes the α', ρ', υ' parameters are rescaled which is detailed in the legend 

We can see that the ρ' and υ' parameters are extremely stable, their relative standard deviation 

is 0.0009% and 0.0011%, respectively. The α' parameter has also changed significantly from 

the original α volatility parameter, where its domain has been extended to the negative regime 

as well. We have also plotted the time evolution of the real and reconstructed ATM volatilities 

using this strictly two-factor model, where the reproduction error has been increased to 

NRMSE=2.5% from the original 0.5% but it is still accaptable. The reproduction error of the 

volatility skews at all strikes (ΔK) can be seen on Figure 7. The results are compared to the 

SABR replication. 

 
Figure 7: Reproduction error of the normal implied volatility at the different strikes. Blue and orange 

bars refer to the neural network replication of the SABR model, and its further trained version on real 

data (deformation of SABR), respectively 
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We can see that requiring from the network to behave as a two-factor model causes an increase 

in the reproduction error. The mean NRMSE values are around 3% and 0.5% in case of the 

deformed SABR and the SABR replication, respectively. We can also notice that the 

reproduction efficiency is the best near to ATM and gets worse towards the edges in case of 

the deformed SABR. Let us check the effect of the forward rate (F) and α' on the volatility 

skews. In Figure 8 we have plotted the skews on a ΔK -F and ΔK - α' grid where we fixed the 

α' and F parameters at their mean value, respectively. 

 

Figure 8: Effect of the forward rate and α' on the volatility skews in the deformation of SABR. Left: 

normal implied volatilities calculated on a ΔK -F grid while fixing α'. Right: normal implied volatilities 

calculated on a ΔK - α' grid while fixing F 

We can observe that the forward rate has a simple increasing effect on the skews by decreasing 

F. Contrarily, α' has a much more complex effect. Moving along the α' axis the skews move 

vertically and change their slope and convexity at the same time. This behaviour is what we 

could expect: all the impacts of the original SABR model parameters (α,ρ,υ) on the volatility 

skews must be compressed into the single latent parameter α'. We can also notice that the sign 

of α' encodes mainly the skewness: for α'<0 there are shallower volatility skews while for α'>0 

we can find much steeper skews. 

3.2. Evaluation on the test set 

After the training we evaluated the model on the unseen test data (from 2019 September 1 to 

2020 October 21)). The time evolution of the latent variables and the observed parameters can 

be seen in Figure 9. 
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Figure 9: Time evolution of the observable forward rate and ATM volatility as well as the reproduced 

ATM volatility and the new α', ρ', υ' latent variables regarding to the test set. For illustration purposes 

the α', ρ', υ' parameters are rescaled which is detailed in the legend 

The first thing that we can observe is that on the unseen data the ρ' and ν' latent variables still 

remained almost constant. The other important note is that the ATM volatility reconstructions 

are still good (NRMSE=6.9%) until a well-defined date. From 2020 January 15 - which is close 

to the beginning of the pandemic crisis - the reproductions start to deviate significantly from 

the groundtruth values. In Figure 10 we plotted the absolute reproduction error – namely the 

root mean squared error (RMSE) - averaged at all strikes as well as calculated for each strike 

individually. 

 
Figure 10: Time evolution of the root mean squared error of the reproduction. Colored, dotted lines 

refer to the difference measured at the different strikes individually, whereas black continues line 

represents the mean deviation 

We can see that at all strikes the reconstructed volatility values diverge from the observations 

between 2020 January 15 and 2020 March 27 as well as from 2020 May 12 to the end of the 

test set. This means that the model can well describe the dynamics of the swaption skews by 

using only two stochastic variables if the market is "normal", and produces significant 

differences when the market goes into an unusual environment. A neural network has typically 
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a good interpolation ability and it is bad at extrapolating. If it gets an unseen sample which is 

„far outside“ of the manifold of the train set, its prediction efficiency will decrease. In the 

following we have calculated the Euclidean distance for each test sample to all other train 

samples in the 9-dimensional space spanned by the V1,...,8 and F observed parameters and we 

extracted the minimum distance for each test sample (see Figure 11.). In this way we measured 

how unusual a specific skew for the network is. 

 
Figure 11: Relation between the distance of test samples from the train set and the reproduction error. 

Blue continuous line represents the minimum of all distances from that specific test sample to all train 

samples, while the black dotted line refers to the RMSE of the reproduction 

We can see that there is a strong correlation between the minimum distance of the test samples 

to the train set and the reconstruction efficiency of the network. This means that by decreasing 

the number of degree of freedom of the model causes a high sensitivity to unusual volatility 

skew – forward rate pairs. This feature could be extremely useful in regime change detection 

since the model can detect immediately if the market moves from the usual space. 

4. Discussion 

According to these results we are now closer to answer the original question: does the incorrect 

model choice or the complexity of the market cause the large fluctuation of the SABR 

parameters over time? It is now clear that for this specific swaption time series we are able to 

find a two-factor model which can follow the dynamics of swaption skews not only in the 

training set but even in the test set for several months. The price of keeping the original ρ and 

υ constant is not surprisingly the lower accuracy. However, the reconstruction performance is 

still acceptable: NRMSE~3-4% for training set and NRMSE~6-7% for the stable part of the 

test set. This shows that the investigation of the true number of degrees of freedom is very 

important before creating too complex pricing models. Using neural networks we can fix the 

number of latent parameters and find the model that fits the best to the observed data. On the 

other hand - as in the case of all deep learning studies - the model efficiency will strongly 

depend on the choice of training set, as we saw in our study by the model evaluation on the test 

set. However, if we intentionally use „normal“ market data as the training set then the model 

will be sensitive to the unusual market movements. The development of such market regime 

change detectors can help in finding optimal trading strategies and is an active research area in 

computational finance, see (Bucci & Ciciretti, 2021). 
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5. Conclusions 

In our study we have investigated a well-known problem that the SABR supposed to be non-

stochastic model parameters (ρ and ν) are in practice stochastic. Our goal was to find an 

alternative option pricing model which is a strictly of two factors having the forward rate and 

a new α' variable as stochastic parameters. For this study we used neural networks which have 

high flexibility to adjust their weights to real data while using an arbitrarily customizable loss 

function. Due to the relatively small number of real market data we first trained a model 

calibrator (encoder) and  a model replicator (decoder) network on synthetic data, where we 

achieved the accuracy of previous studies and demonstrated again the excellent interpolation 

capabilities of neural networks. We have combined the two networks together into an 

autoencoder-like structure which is a novel approach and is much more interpretable than 

starting with a usual (variational) autoencoder, see (Bergeron et al., 2021). In our method we 

know the exact meaning of the original latent space, and we let the neural network initially 

replicating SABR to adapt its weights and the latent space to the real observations. 

We have shown that one can find such an option pricing model but with the price of somewhat 

lower accuracy. We have also demonstrated that this two-factor model is able to follow the 

dynamics of the previously unseen swaption market over several months. However, in extreme 

environments the model performance suddenly decays, which is a sensitive indicator of unusual 

market conditions. 
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